
Randomized Rounding : Set Cover and Independent Set1

• In this lecture, we introduce a power technique in algorithm design in general : randomization. More
precisely, randomized rounding takes an feasible LP solution, interprets the fractional solution xi

as the chance or marginal probability that the variable i is set to 1 in the optimum solution, and
then designs a randomized algorithm which produces a (distribution over) feasible solution. Since the
solution produced by the algorithm can (and most often will) be different each time it is called, instead
of looking at the cost/value of a solution, one talks about the expected cost/value of a solution.

Definition 1. For a minimization problem, anα-approximate randomized algorithm returns a feasible
solution S of expected cost Exp[c(S)] ≤ αOPT . For a maximization problem, an α-approximate
randomized algorithm returns a feasible solution S of expected value Exp[v(S)] ≥ OPT/α.

As we go along, we will use facts from probability theory, mostly regarding the concentration of
random variables around their means.

• Canonical Example : Set Cover. Recall the set cover problem. We have a set family S := (U, (S1, . . . , Sm))
where Sj is a subset of the universe U . Each set Sj has a non-negative cost c(Sj). The objective is
to select a family of these subsets of minimum cost whose union is the universe. Following is an LP
relaxation for the problem where xj is supposed to denote whether set j is picked or not.

lp(S) := minimize
m∑
j=1

c(Sj)xj (Set Cover LP)

∑
j:i∈Sj

xj ≥ 1, ∀i ∈ U (1)

0 ≤ xj ≤ 1, ∀j = 1, . . . ,m (2)

If the xj ∈ {0, 1}, then the above captures the set cover problem exactly. When xj ∈ [0, 1], one
interpretation of this solution can be the “chance” that set j is picked in an optimal solution. To be
more precise and useful, if we ourselves could design a randomized algorithm which always returns a
set cover and the probability of set j being present in the solution is = xj , then such a distribution is
perhaps what the LP is prescribing. And indeed, by linearity of expectation, the expected cost of such
a solution is going to be ≤ lp(S). Make sure you see this before proceeding.

Of course, if we can find a solution whose expected cost is ≤ lp(S) ≤ opt, then we would be exactly
solving set cover. So the above is not possible unless P=NP. However the above interpretation is
useful, and the xj’s can be used to design an approximation algorithm. Here is it without further
ado.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 14th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



1: procedure SET COVER RANDOMIZED ROUNDING(S = (U, (Sj , c(Sj) : j ∈ [m])))):
2: Solve (Set Cover LP) to obtain xj ∈ [0, 1] for 1 ≤ j ≤ m.
3: Sample each set j independently with probability pj := min(1, lnn · xj).
4: For each element i not covered in Line 3, pick the minimum cost set S(i) :=

minS:i∈S c(S) which contains i.

Line 3 is the randomized step and will change from run-to-run. If we denote the indices of the sets
picked in Line 3 as R, then note that

⋃
j∈R Sj may or may not be U . In order to fix this, in Line 4 one

goes over yet uncovered elements and picks the minimum cost set containing that element. Another
point of note : in Line 3, the sampling probability is not xj but something which is “boosted up”. This
boosting is by hindsight, as hopefully will be clear from the analysis below.

Theorem 1. SET COVER RANDOMIZED ROUNDING is a (1 + lnn)-approximate randomized
algorithm.

• Proof. By design, due to Line 4, the algorithm returns a feasible solution with probability 1. We need
to argue about the expected cost of this solution. We begin with an easy observation

Claim 1. For any element i, we have c(S(i)) ≤ lp(S).

Proof. Fix an element i and consider the contribution of only the sets containing i to the LP solution.
We get lp ≥

∑
j:i∈Sj

c(Sj)xj ≥ c(S(i))
∑

j:i∈Sj
xj ≥ c(S(i)), where the first inequality followed

since S(i) is the cheapest set containing i, and the second followed from (1).

Let alg be the random variable indicating the cost of the solution picked by the algorithm. We write
alg = alg1 + alg2 where alg1 is the random variable indicating the costs of the sets picked in Line 3,
and alg2 is the random variable indicating the costs of the sets picked in Line 4. Note that alg2
is a random variable as well, although Line 4 has no randomness in it. This is because it depends
on the randomness in the step above. Indeed, alg1 and alg2 are not independent random variables.
Nevertheless, the beautiful linearity of expectation2 result lets us assert

Exp[alg] = Exp[alg1] +Exp[alg2]

We now proceed and bound the two expectations in the RHS. Indeed, the theorem then follows
from Claim 2 and Claim 3.

Claim 2. Exp[alg1] ≤ lnn · lp.

Proof. We first write alg1 =
∑m

j=1 c(Sj)Xj where Xj is the indicator random variable whether set
Sj is picked in Line 3. Once again, linearity of expectation states Exp[alg1] =

∑m
j=1 c(Sj)Exp[Xj ],

and Exp[Xj ] = pj ≤ lnn · xj , thus completing the proof.

Claim 3. Exp[alg2] ≤ lp.
2For any two random variables X,Y , we have Exp[X + Y ] = Exp[X] +Exp[Y ].

2



Proof. Similar to the above claim, we now write alg2 also as a sum of random variables thus: alg2 =∑
i∈U c(S(i)) · Yi where Yi is the indicator random variable whether element i is left uncovered

in Line 3. We soon show that Exp[Yi] ≤ 1
n . This would imply alg2 ≤ 1

n

∑
i∈U c(S(i)) ≤ lp where

the last inequality follows from Claim 1.

Fix an element i. We note that Exp[Yi] is simply the probability i is not covered in Line 3. Observe
that this probability is precisely

∏
j:i∈Sj

(1− pj) This is where the independence in Line 3 is used. So
we may assume pj 6= 1, and therefore pj = lnn · xj for all such sets. Which implies

Exp[Yi] =
∏

j:i∈Sj

(1− lnn · xj) ≤
∏

j:i∈Sj

e− lnn·xj = n
−

∑
j:i∈Sj

xj ≤ 1

n

where the last inequality follows from (1).

Exercise: KK

Consider the MAX-COVERAGE problem where one has to pick k sets to maximize the number
of elements covered. Describe a LP relaxation for the problem, and a randomized rounding
algorithm that obtains an (1− 1

e )-approximation.

Exercise: KK

Consider the multi-set-multi-cover problem where the input is same as the set cover problem,
but now every element i has a demand d(i) as to how many times it needs to be covered. More
precisely, you are allowed to choose a set Sj multiple times, but if you choose it kj times you pay
cost kjc(Sj). For every element, you should have

∑
j:i∈Sj

kj ≥ d(i). Describe an LP relaxation
and an O(log n) randomized rounding algorithm.

• Independent Set. We now describe a randomized algorithm for a maximization problem, the inde-
pendent set problem in graphs. In this problem we are given an undirected graph G = (V,E) with
non-negative weights wv on vertices. The objective is to pick an independent set I ⊆ V with as large
a weight as possible. Recall, I is independent if no edge (u, v) has both endpoints in I . The approxi-
mation factor obtained isn’t great, but the main point is to introduce the technique of “alteration”. In
the problem sets, we may explore a better factor.

• LP Relaxation.Here is an LP relaxation for the problem.

lp(G,w) := maximize
∑
v∈V

wvxv (IS LP)

xu + xv ≤ 1, ∀(u, v) ∈ E (3)

0 ≤ xu ≤ 1, ∀u ∈ V (4)

• Randomized Rounding. We now describe an algorithm which is a 2
√
m-approximation, where m is

the number of edges. Let W := maxv∈V wv. Note that there is a trivial algorithm whose value is W :
return the singleton vertex with maximum weight. This benchmark will be used.

3



1: procedure IS RAND ROUNDING(S = (U, (Sj , c(Sj) : j ∈ [m]))):
2: Solve (IS LP) to obtain xv ∈ [0, 1] for v ∈ V with value lp.
3: if lp ≤ 2

√
m ·W then:

4: return single vertex of maximum weight W . . By design, a 2
√
m-appx.

5: Sample independently vertex v with probability pv := xv√
m

to get a set I . . At this pointI
may not be independent.

6: For each edge (u, v) with u and v in I , delete both from I .
7: . It would’ve sufficed to delete any one, but as we show this overzealousness doesn’t

hurt. After all “bad” edges are thus fixed, I is indeed independent.
8: return I .

Theorem 2. IS RAND ROUNDING returns a independent set I with Exp[w(I)] ≤ lp
2
√
m

.

• Proof. Once again, it is clear that the solution returned is an independent set. Also note that if lp ≤
2
√
m ·W , the max weight singleton vertex has weight ≥ lp/2

√
m. So we may assume otherwise,

that is, W ≤ lp
2
√
m

.

Let I1 be the set of vertices picked after Line 5, and let D be the subset of vertices deleted from I1
in Line 6. Thus, I = I1 \D. By linearity of expectation, Exp[w(I)] = Exp[w(I1)]−Exp[w(D)]

Let Xv be the indicator random variable that v ∈ I1, and for an edge (u, v) ∈ E, let Zuv be the
indicator random variable that both u and v are in I1. Now note that

w(I1) =
∑
v∈V

wvXv and w(D) ≤
∑

(u,v)∈E

(wu + wv) · Zuv

Note that we have an inequality for w(D), since we may possibly be double counting in the RHS. For
example, if there are two edges (u, v) and (u, z) in E, and if u, v, z are all in I1, then we should count
wu + wv + wz in w(D), but the RHS double counts wu.

Next, notice that Exp[Xv] =
xv√
m

and Exp[Zuv] =
xuxv
m . We can now upper bound this expectation

as follows

Exp[Zuv] =
xuxv
m

≤︸︷︷︸
AM-GM

x2u + x2v
2m

≤︸︷︷︸
since xu,xv≤1

xu + xv
2m

≤︸︷︷︸
by(3)

1

2m

Substituting all of this above, we get

Exp[w(D)] ≤ 1

2m

∑
(u,v)∈E

(wu + wv) =
∑
v∈V

deg(v)

2m
wv ≤ max

v∈V
wv =W

where the last inequality follows since
∑

v∈V deg(v) = 2m. Thus, the LHS in the last inequality is a
(weighted) average of all the weights, which is at most the maximum weight. Since W ≤ lp

2
√
m

, we

get Exp[w(D)] ≤ lp
2
√
m

. And so,

Exp[w(I)] = Exp[w(I1)]−Exp[w(D)] ≥ lp√
m
− lp

2
√
m

=
lp

2
√
m

4



Exercise: KKSuppose d is the maximum degree of the graph G = (V,E). Modify IS RAND

ROUNDING and its analysis to describe an algorithm which returns a 4d-approximation. That
is, it returns an independent set I with Exp[w(I)] ≥ lp

4d . Indeed, if designed correctly, your
algorithm should also work when G is a hypergraph.

5


